23 research outputs found

    PSAMM: A Portable System for the Analysis of Metabolic Models

    Get PDF
    The genome-scale models of metabolic networks have been broadly applied in phenotype prediction, evolutionary reconstruction, community functional analysis, and metabolic engineering. Despite the development of tools that support individual steps along the modeling procedure, it is still difficult to associate mathematical simulation results with the annotation and biological interpretation of metabolic models. In order to solve this problem, here we developed a Portable System for the Analysis of Metabolic Models (PSAMM), a new open-source software package that supports the integration of heterogeneous metadata in model annotations and provides a user-friendly interface for the analysis of metabolic models. PSAMM is independent of paid software environments like MATLAB, and all its dependencies are freely available for academic users. Compared to existing tools, PSAMM significantly reduced the running time of constraint-based analysis and enabled flexible settings of simulation parameters using simple one-line commands. The integration of heterogeneous, model-specific annotation information in PSAMM is achieved with a novel format of YAML-based model representation, which has several advantages, such as providing a modular organization of model components and simulation settings, enabling model version tracking, and permitting the integration of multiple simulation problems. PSAMM also includes a number of quality checking procedures to examine stoichiometric balance and to identify blocked reactions. Applying PSAMM to 57 models collected from current literature, we demonstrated how the software can be used for managing and simulating metabolic models. We identified a number of common inconsistencies in existing models and constructed an updated model repository to document the resolution of these inconsistencies

    A Genome-Scale Model of \u3cem\u3eShewanella piezotolerans\u3c/em\u3e Simulates Mechanisms of Metabolic Diversity and Energy Conservation

    Get PDF
    Shewanella piezotolerans strain WP3 belongs to the group 1 branch of the Shewanella genus and is a piezotolerant and psychrotolerant species isolated from the deep sea. In this study, a genome-scale model was constructed for WP3 using a combination of genome annotation, ortholog mapping, and physiological verification. The metabolic reconstruction contained 806 genes, 653 metabolites, and 922 reactions, including central metabolic functions that represented nonhomologous replacements between the group 1 and group 2 Shewanella species. Metabolic simulations with the WP3 model demonstrated consistency with existing knowledge about the physiology of the organism. A comparison of model simulations with experimental measurements verified the predicted growth profiles under increasing concentrations of carbon sources. The WP3 model was applied to study mechanisms of anaerobic respiration through investigating energy conservation, redox balancing, and the generation of proton motive force. Despite being an obligate respiratory organism, WP3 was predicted to use substrate-level phosphorylation as the primary source of energy conservation under anaerobic conditions, a trait previously identified in other Shewanella species. Further investigation of the ATP synthase activity revealed a positive correlation between the availability of reducing equivalents in the cell and the directionality of the ATP synthase reaction flux. Comparison of the WP3 model with an existing model of a group 2 species, Shewanella oneidensis MR-1, revealed that the WP3 model demonstrated greater flexibility in ATP production under the anaerobic conditions. Such flexibility could be advantageous to WP3 for its adaptation to fluctuating availability of organic carbon sources in the deep sea

    The Genome Sequence of the Grape Phylloxera Provides Insights into the Evolution, Adaptation, and Invasion Routes of an Iconic Pest

    Get PDF
    Background: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. Results: Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved > 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world. Conclusions: The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture

    Using PSAMM for the curation and analysis of genome-scale metabolic models

    No full text
    PSAMM is an open source software package that supports the iterative curation and analysis of genome-scale models (GEMs). It aims to integrate the annotation and consistency checking of metabolic models with the simulation of metabolic fluxes. The model representation in PSAMM is compatible with version tracking systems like Git, which allows for full documentation of model file changes and enables collaborative curations of large, complex models. This chapter provides a protocol for using PSAMM functions and a detailed description of the various aspects in setting up and using PSAMM for the simulation and analysis of metabolic models. The overall PSAMM workflow outlined in this chapter includes the import and export of model files, the documentation of model modifications using the Git version control system, the application of consistency checking functions for model curations, and the numerical simulation of metabolic models

    Reconstruction and Analysis of Thermodynamically Constrained Models Reveal Metabolic Responses of a Deep-Sea Bacterium to Temperature Perturbations

    No full text
    Microbial acclimation to different temperature conditions can involve broad changes in cell composition and metabolic efficiency. A systems-level view of these metabolic responses in nonmesophilic organisms, however, is currently missing. In this study, thermodynamically constrained genome-scale models were applied to simulate the metabolic responses of a deep-sea psychrophilic bacterium, Shewanella psychrophila WP2, under suboptimal (4°C), optimal (15°C), and supraoptimal (20°C) growth temperatures. The models were calibrated with experimentally determined growth rates of WP2. Gibbs free energy change of reactions (DrG9), metabolic fluxes, and metabolite concentrations were predicted using random simulations to characterize temperature-dependent changes in the metabolism. The modeling revealed the highest metabolic efficiency at the optimal temperature, and it suggested distinct patterns of ATP production and consumption that could lead to lower metabolic efficiency under suboptimal or supraoptimal temperatures. The modeling also predicted rearrangement of fluxes through multiple metabolic pathways, including the glycolysis pathway, Entner-Doudoroff pathway, tricarboxylic acid (TCA) cycle, and electron transport system, and these predictions were corroborated through comparisons to WP2 transcriptomes. Furthermore, predictions of metabolite concentrations revealed the potential conservation of reducing equivalents and ATP in the suboptimal temperature, consistent with experimental observations from other psychrophiles. Taken together, the WP2 models provided mechanistic insights into the metabolism of a psychrophile in response to different temperatures

    List of models that had inconsistencies in SBML syntax.

    No full text
    <p>List of models that had inconsistencies in SBML syntax.</p

    Stoichiometric inconsistencies in iKF1028 [70].

    No full text
    <p>Reaction: the reaction identifiers in the GEM; Equation: the reaction equations; H left/right: the total number of H atoms at the left/right side of the equations; H residue: the differences between the number of H atoms at the left versus the right side of the equations. Two reactions, RR08939 and IR01815, are shown at the bottom of the table, which correspond to the balanced version of the inconsistent reactions RR00610 and IR04287, respectively. Both pairs (marked with * and **, respectively) were present in iKF1028, rendering the overall model stoichiometrically inconsistent.</p

    Diagram showing an application of the <i>FindPrimaryPairs</i> algorithm to a metabolic model.

    No full text
    <p>Diagram showing an application of the <i>FindPrimaryPairs</i> algorithm to a metabolic model.</p

    Overview of the internal workflow in PSAMM.

    No full text
    <p>The five main components include: (1) user interface, (2) model input/output, (3) model representation, (4) linear programming utilities, and (5) model checking/simulation. Connections among these components form the internal workflow of PSAMM.</p
    corecore